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East coast ocean currents 
By J. A. DURANCE AND J. A. JOHNSON 

School of Mathematics and Physics, 
University of East Anglia, Norwich 

(Received 25 September 1969) 

A three-dimensional barotropic model of the wind-driven ocean circulation 
is examined and the flow nea.r the east coast of the ocean is considered in detail. 
The model is linear and has constant coefficients of eddy viscosity. It is shown 
that a strong current may exist in the eastern boundary layer when upwelling 
or downwelling is present. No net northwards transport is produced as an equal 
deep counter current also occurs. A consequence of the downwelling is that the 
principal interior gyre is prevented from reaching the east coast and a secondary 
gyre is formed in this region. 

1. Introduction 
Recent work on the wind-driven ocean circulation using three-dimensional 

models has shown that two-dimensional transport theories, although adequate 
to  describe many features of the circulation, actually mask a number of interest- 
ing effects. The model considered here is a rectangular ocean with uniform depth 
on a p plane with vertical lateral boundaries. The co-ordinate system used 
has x increasing eastwards, y northwards and z vertically upwards, with corre- 
sponding velocity components u, v, w and f is the variable Coriolis parameter. 
A wind stress (r”,rU) is applied to the surface at x = 0. I n  such a homogeneous 
ocean, there amre two mechanisms that may drive the interior flow between the 
Ekman layer. If curl (T/f) is non-zero, a horizontal divergence is produced in the 
surface Ekman layer causing Ekman layer suction (upwelling from the interior) 
which in turn drives the interior horizontal motion. This process determines v 
and w but leaves some arbitrariness in u. The second mechanism occurs if the 
wind stress has a northward component. This induces an eastward Eliman 
transport’ which descends in the eastern boundary layer and enters the interior 
as a further contribution to  the u velocity (the weak lower Ekman layer being 
unable to  accept this volume of fluid). 

If the wind stress has the form rx = -rcos y, T U  = 0 there is no eastward 
Ekman transport and no downwelling at  the east coast. The interior flow is 
determined entirely by curl (T/f). Examination of the western boundary layer 
shows the usual westward intensification as in transport theories. However, when 
the boundary layer is matched to  the interior solution, Johnson (1968) found 
that some water in the northward flowing west coast current in the sub-tropical 
gyre leaves this gyre and flows north-eastwards to enter the subpolar gyre. Up- 
welling occurs in the northern gyre and downwelling in the southern gyre. These 
effects are masked by transport theories for which only closed gyres are found. 

I1 = = M  44 
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On the other hand if the wind stress is 7x = 0, 7v = 7(y) then curl (.If) is zero 
and ZI and w are zero in the interior. However, as shown by Pedlosky (1968), 
an eastward Ekman transport is produced which descends in the eastern bound- 
ary layer, enters the interior where it flows westwards, and ascends in the western 
boundary layer. Transport theories merely predict no net transport. 

I n  this paper we consider a combination of the above two effects by applying 
a wind stress T = ~ ( x ,  y). I n  addition to transport between gyres and upwelling 
(or downwelling) a t  the coasts, some additional effects are found that are absent 
in transport theories. Associated with upwelling near the east coast of the ocean, 
there may be an east coast current which, although weak compared with the 
west coast current, is significant compared with the interior flow. A counter- 
current is produced a t  lower depths. As these results depend on the magnitude of 
a constant horizontal eddy viscosity, a rather controversial concept, and as no 
account has been taken of density stratification, it is unrealistic to expect this 
model to  represent too closely the actual ocean circulation. However, it is inter- 
esting to  note here that a similar kind of circulation is observed off the coasts of 
California, south-west Africa (the Benguela current) and Peru-Chile when up- 
welling occurs. A secondary effect due to  the upwelling and independent of the 
magnitude of the eddy viscosity is the production of an extra gyre near the east 
coast. 

A much more realistic model would include a variable density distribution. 
However, the numerical work of Bryan & Cox (1967) shows that the effect of the 
wind stress is confined to a thermal boundary layer just below the Ekman layer, 
and moreover the distribution of upwelling and horizontal velocities have many 
features in common with the circulations discussed here. More recently Pedlosky 
(1969) in a linear stratified theory shows that an important contribution to the 
circulation in the thermal boundary layer is induced by the surface wind stress 
and that the lateral boundary layers are important in determining the interior 
flow. This suggests that it is profitable to  examine in detail the mathematically 
much simpler homogeneous model to  predict features which may then be 
looked for in more complicated and more realistic models. 

2. Equations of motion 
The linear momentum and continuity equations for steady flow in dimension- 

less variables are 
-f. = - p x  + E,(u,, + uyy) + Evum 

f u  = - p, + E,fvxx + ZIvy) + E,v,,, 

(1)  

12) 

(3) 

u,+v,+w, = 0, (4) 

0 = - P, + S2EH(wxZ + wyY) + ~ 2 E y ~ , , ,  

wheref = 1 +&is the variable Coriolis parameter used in the P-plane approxima- 
tion, P is the reduced pressure and u, v, w are the velocity components eastwards, 
northwards and vertically upwards respectively. The small parameters are defined 
as 

E,  = vH/foL2,  Ev = vv/foD2, S = D/L,  
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where D, L are vertical and horizontal length scales, and v p ,  vH are constant 
vertical and horizontal eddy viscosities. A more detailed derivation of these equa- 
tions is given in Johnson (1 968). As the magnitude of the eddy viscosities, and 
hence the Ekman numbers E,, E,, are difficult to determine, we shall write 

E, = E, = E. 

No qualitakive change in the nature of the solutions occurs by keeping sepa,rate 
Ekman numbers. 

The boundary conditions a t  the surface are 

u = E-47,, v, = E-67v7 w = 0;  z = 0. 

At the bottom and on the east and west coasts, the velocity is zero so that 

2 L = V = w = O ;  z = - 1 ,  x = 0 , 1 .  

The north and south boundaries remain free, but we shall confine our attention 
to  a region between latitudes of zero wind stress curl. 

3. The Ekman layer and interior solutions 

is given by 
The solution in the upper Ekman layer away from the coasts is sta,nda.rd and 

1 
vE = --exp{ -6(~f)a}{(7Y-77")c~~P(gf)B- (7v+7z)sing(gf)4)+O(E9), (6) 

(2f 11 
wE(x, y, co) = EJk.  curl ( ~ / f ) ,  (7)  

where k = (0,O ,1) and z = -EhC. Each solution in this paper will be valid in 
only the region indicated and will be matched to solutions in neighbouring regions. 
Consequently small differences may be noted compared with corresponding soh-  
tions in Pedlosky (1968) where correction functions are used. 

The lowest-order solution in the interior region, away from the coasts and 
below the Ekman layer, is 

W, = Et(z+l)k.curl  - , (;) 
where U(y) has to be found from matching with the eastern boundary layer. 

city components to zero. 
The lower Ekman layer is weak and serves only to smooth the horizontal velo- 

11-2 
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4. The east coast boundary layer 

a/ax % a/ay, a/& and simplify equations (1)-(3) to  
To obtain the structure of the east coast boundary layer, we assume that 

- fv = - P x + E Huzx, 

f~ = -P,+EH~J,,, 

0 = -P,+S2E,wX,. 

Elimination of the variables in favour of v leads to 

s2E& vxxxxzx + E% ' Z X X Z Z Z -  s2EH$Vxxx + f 2vzz = '* (11) 

The solution of this equation has been considered by Pedlosky (1968) for EH % S2. 
However, the magnitude of E ,  is difficult to  assess owing to the choice of a reason- 
able value for vH and it is likely that Gand Ehwill have similar ordersof magnitude. 
Consequently it is useful to examine the opposite limit E H  < S2 as a number of 
distinctive results are found. 

I n  the remainder of this section and in $8 5 and 6 it will be assumed that E, < S2. 
Under this restriction the second term of (1 1) is always smaller than the other 
terms. The first and third terms of (1  1) balance in a boundary layer of thickness 
EL provided V ,  = 0, which requires that the solution is hydrostatic. The first 
and fourth terms of (1  1)  balance in a boundary layer of thickness (SE,)i a non- 
hydrostatic layer in which upwelling occurs. 

The outer E* layer 

I n  this hydrostatic layer the appropriate stretched co-ordinate is 7 = (1  - x) E-i 
and the variables may be expanded as follows, 

u = E&&+ ..., 

w = E&&+ ..., 
v = E@+O(E&), 

P = E&P+ .... 
Substitution into (1)-(4) gives 

h h 

f O = - P  ,' f a  = - P, 4- a,,, P, = 0, &, = a,. (12) 

a,,, +pa = 0, (13) 

Elimination of p ,  & gives the equation for 0 as 

which may be compared with the first and third terms of ( 1  1) .  The solution of this 
equation which is bounded as 7 -+ co is 

6 = e-b', (14) 

and the continuity equation gives 

& = .ii,(y) -P-*O;(y) e-j',, 

where the prime denotes differentiation. Matching with the interior solution (8) 

(15) 
gives 

.i2,(y) = E - ~ u , ( l , y )  = Q Y ) .  
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As v is smaller than O(E)) in the inner layer, matching (14) with the inner layer 
gives a, = 0. Hence the Ef layer on the east coast does not exist to  the lowest 
order. It is of course important on the west coast where it provides the north- 
south return flow. 

The inner (SE)* layer 

For this layer we introduce the stretched co-ordinate 6 = (1 - 2) (6E)-* and the 
following expansions for the other variables : 

The choice of expansion has been made to bring in the non-hydrostatic nature of 
the layer and so that u and P can match with the outer solution. The magnitude 
of w is chosen so that this layer can accept the Ekman transport from the surface 
Ekman layer. The substitution of these expansions into (1)-(4) leads to 

Pot = 0, - f Go = Pit, 
f u o  = -Po, + q)gg ,  

Po, = 0, PIB = WOE5, 

uot - woz = 0. 
- -  

We see that Po depends only on y and is the hydrostatic part of the pressure field 
which matches with the outer flow, whereas pl is the non-hydrostatic contribu- 
tion. The inclusion of the extra term in (20) compared with (12) shows that lateral 
friction is more important in this layer than in the E* layer. Elimination among 
(18)-(21) leads to a single equation for this layer, 

-+f2- -, V,, w,, Pl = 0, 
86% a2 -) ( a6 ;i2) (8Eo - 

which may be compared with the first and fourth terms of (1 1) .  
The above series expansions also give the following information. As E < S2 the 

largest velocity component is w, the upwelling or downwelling. As EB 9 S%E* 9 E* 
the northward velocity component v is larger than the interior flow but less 
than the O(E))  northwards flow in the west coast current. Thus if Zo $: 0 
there will be an appreciable current along the east coast. Finally, as (6E)) 9 E* 
the boundary conditions on w are the Ekman layer compatibility conditions 

w,=O on x = O , - l ;  6 + 0 .  (23) 

(24) 

(25) 

- 

The boundary conditions at the east coast are 
- 
U ,  = Zo = Go = 0; 6 = 0. 

The matching conditions for large 6 are, using (15), 
- 
U, + U ( y ) ,  azc,/az -f 0, 5, + 0, wo --f 0 as 6-f 00. 
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Another restriction comes from the fact that the Ekman transport into the 
corner region near z = 0, x = 1 must descend in this eastern boundary layer and 
then enter the interior as no volume flux of this order can be accepted by the lower 
Ekman layer. That is 

ro 

01 

The solution of (22) subject to the conditions (23)-(26) is found by separation 
of variables and to simplify the presentation the details are given in an appendix. 
The complete solution in the inner (8E)* layer is 

f 
m 

n = l  
zo = - [+(1, y ) / f  1 { 1 + C [4/1/31 cos (n.2) exp ( - i r n 5 )  sin (843 rn5  + in) , (27) 

(28) 

(29) 

m 

n= 1 

m 

n= 1 

Vo = ~ ’ ( 1 ,  y) C [4/1/317n2 cos (nnz) ~ X P  ( - 4rn5) sin i d 3  r n 5 ,  

Go = 71’( 1, y) C [4/1/3] -yn2 sin (nnx) exp ( - &yn[) sin 443 y&, 

where y7‘ = (nnf)*. These series are uniformly convergent except near x = 0, 
5 = 0 where the downwelling fluid leaves the Ekman layer. The same kind of 
singularity occurs in Stewartson layers. TO examine the singulnrity in detail 
would require an analysis of the Eg x Et corner region. 

The velocity component W is large and provides the upwelling and downwelling 
near the coast. The vertical transport in this boundary layer at  a given value of z 
is 

from Tolstov (1962, p. 102). 

2,?&rU(l,y) sinnnz 
-- c -F f n=1 

This shows that the vertical transport decreases 
linearly with depth so that none enters the lower Ekman layer. Upwelling occurs 
when ~ v (  1 ,  y) is negative and there is a southward component of wind stress near 
the east coast. 

The velocity component U serves to bring the interior flow to zero a t  the bound- 
ary and conveys the downwelling water into the interior. The boundary con- 
dition iio = 0 at 6 = 0 is satisfied as 

m c cosnnz = - $  ( - 1  < 2 < O),  
w= 1 

from Tolstov (1962, p. 170). 
The velocity component V is large compared with the interior velocities and 

from the form of the series (16) and (17) we see that this current arises as a 
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secondary effect of the upwelling. The horizontal northward transport a t  a given 
depth z in this layer is proportional to 

from Tolstov (1962, p. 91). This profile is shown in figure 1. If there i s  a south- 
ward component of wind stress near the coast the east coast current is  southwards 
near the surface and northwards at greater depth. This  is  associated with upwelling. 

FIGURE 1. Variation with depth of northward transport in the east coast 
current when there is a southward component of wind stress. 

The directions are reversed when the wind stress has a northward component. 
The singularity a t  x = 0 is not important as log 12 sin +n-zI is O(1) when 1x1 is 
O(E*) for E = O( This requires an O( 1) contribution tow in the corner region 
where 1x1 < O(E*). The total northward transport in this layer is 

which shows that the flow in the east coast current near the surface is just 
balanced by the counter-current at greater depth. 

5. Example of an east coast current 

the form 

The interior flow outside the eastern boundary layer from (8)-(10) and (26) is 

Let the local wind stress near the east coast (x = 1) be southwards and have 

7x = 0, 7' = - cosk(x- 1). 

u, = (E*/f)cosk(x- I) ,  vI = (E*/P)ksink(x- I), 

w, = (E*/f)  k(x + 1) sin k(s - 1). 
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This represents a flow that is towards the coast. Further away from the coast 
the flow is southwards with associated slow downwelling. 

I n  the east coast boundary layer there is upwelling, a southwards current near 
the surface and a northwards current nearer the bottom. As the southwards 
component of the interior tends to zero as the coast is approached this situation 
shows up the coastal current particularly clearly. Figure 2 shows these results 
diagrammatically. 

x=: - ?T x= 1 
2 h- 

FIGURE 2 .  Diagrammatic representation of upwelling and zonal flow (shown by arrows) 
nearthecastcoastatx = lproducedbythewindstressr" = 0 , r y  = -cosk(x-  l).Thenorth- 
ward and southward flow is indicated by the letters N and S respectively. 

Whilst stressing that these results depend on the condition that EH < 8 2  

and that density variations have been omitted from this model, it is still interest- 
ing to compare the currents represented in figure 2 with observations in the 
ocean. The current directions derived here correspond with those found in the 
California current when upwelling is present which occurs when the prevailing 
winds are along the coast from the north-west. Figure 2 may also be compared 
with figure 302 of Defant (1961) which shows a cross-section of the Benguela 
current off south-west Africa. The direction of the currents are reversed due to 
the change of hemisphere. Clearly more realistic models must take account of the 
temperature changes brought about by the upwelling. 

6. The west coast boundary layer 
To complete the ocean circulation a boundary layer is also required along the 

west coast. This boundary layer has two purposes, first, to provide a northwards 
flow when there is a southward flow in the interior and secondly to  provide up- 
welling when there is downwelling at the east coast. 

In  the outer E* layer, the stretched co-ordinate is now defined as 7 = xE-Q 
and the equation corresponding to (13) is 

The change in sign alters the nature of the solution, which is given by Pedlosky 
(1968), and is the standard westward intensification solution with an intense 
northwards current of magnitude O(E*). 

a,,, -pa = 0. 
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In the inner (6E)f layer, the appropriate co-ordinate is 6 = x(&E)-iand the equa- 
tion of motion is 

unchanged from (22). Thus the nature of the solution is the same as in the eastern 
boundary layer. In  particular the vertical velocity is 

very similar t o  (29). This is essentially an upwelling layer in which water from the 
interior is returned to the Ekman layer. There is an associated north-south 
secondary flow of magnitude O(83E3) but this is small compared with the O(E*) 
flow in the thicker layer. 

7. An ocean circulation with zonal wind stress 
In  order to examine the implications of the above result to a full ocean model, 

consider the application of an x independent zonal wind stress. Then the Ekman- 
layer flux is independent of x and 

u I - - E &  , y - i ) a v  P aY2 Tul  f (30) 

from (8) and (26). An interesting feature arises in the interior from inclusion in 
(30) of fluid that comes from downwelling at  the east coast. We see from (30) 
that 

The implications of (31) may be illustrated by using a particular wind stress 
distribution. Consider the application of the wind stress 

7% = - cos ( r y l b )  cos 8, r y  = - cos (ny /b )  sin 6’ (32) 

t o  the rectangular ocean described in $1. This represents a zonal wind stress that 
is inclined at the angle 8 to the north of east and is used to represent the trade 
winds and westerlies over the region 0 < y 6 1. From (8) to (10) and (26) this 
wind stress gives rise to the following interior flow 

7 9  ”(’ b f  Pb2 
uI = Etcos -  -sin8+-(x--l)cosO (33) 

w, = ( z + 1 ) y I .  P 

We have from (33) that 

u, = 0 when x = 1 - (b2P/nr”f) tan 8, 

and z o ( y )  is small if tan8 is less than n”flb2p. Now for a typical ocean gyre the 
north-south length scale is not larger than the east-west length scale and so 
b 6 1. Hence if f/b2/3 N O ( 1 )  then xo is small if 8 is less than 84”. 
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In  the principal gyre to the north of y = 0, vI is southwards. Hence on the curve 
x = 1 - x,, where uz = 0 the flow is southwards into a secondary gyrenear the east 
coast, as shown in figure 3 for 13 = &r, b = 1. Thus for this wind stress distribution 
water that downwells at the east coast penetrates only a short way into the interior. 
The oceanic circulation between two latitudes of zero wind stress curl splits into two 
gyres, a secondary narrow gyre being formed neur the east coast. Also if tan 6 is less 
than n-2flb2,8, (33) shows that the cosine term will dominate the sine term a t  x = 0 
and then water that downwells a t  the west coast can never enter the interior but 
merely reinforces the north-south transport in the Ei-layer. These results for the 
interior flow hold for all values of the ratio E,/P.  

FIGURE 3. Diagrammatic representation of the horizontal flow below the Ekman layer. 
There is downflow from the Ekman layer into the interior region. The open arrows indicate 
the direction of the surface east coast current. Upwelling and downwelling are indicated in 
the (6E$ layer. The wind stress distribution is shown as the right. The curve 1: = 1 - z,(y) is 
shown by -.-*-. 

In Q 4 we show that the east coast current is northwards near the surface when 
7Q( 1, y) is positive. Thus for this wind stress the current near the surface is south- 
wards for 0 < y < & and northwards for 4 < y < 1. The direction is reversed at 
lower depths. 

This work was partially supported by a research grant froin the Natural 
Environment Research Council. 
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Appendix. Derivation of the solution for the eastern boundary layer 
To find the solution of (22), let Go = g(z)h(y,[), and then (22) gives 

g(a6hpp) +jZg”h = 0, 
which separates into 

where A is a constant. The bounded solution of these equations which satisfies 
( 2 5 )  asc  --f co is 

g” + A6g = 0, a6h/a[6- A6fzh = 0, 

x {Wo3exp( - ~ A f ” ~ ) + ~ 0 4 c o s f J 3 A f ” ~ + G , , s i n ~ J 3 A f 3 ~ } .  ( A l )  

The sum is taken over all permissible values of A ,  the zero value being excluded 
by (25). The conditions (23) require that 

wol = 0 and A3 = nn (n = 1,2 ,  ...) 

as the terms in [ are linearly independent for the different values of A ,  and (24) 

wo3 +God = 0. 

- 

- requires that 

Hence, choosing Woz = 1, the solution for Go reduces to 
m - 

w, = C sin nm e-*m5{GO3 e- d& - W03 cos 443 ync + W,, sin fJ3ync}, (A 2) 
n= 1 

where yn  = (nnf)$. 
The solutions of (22) for aii,/az and 6, may be found in the same form as (A 1) 

and as they must satisfy (18), (ZO), (21) involving W,, we see that A3 = nn again. 
The solution for Go satisfying (24) and (25) is 

m 

n=l  
ijo = (wol cos nnz + zOz sin nnz) e-ht 

x {tjo3e-BYnt - zO3 cos 4J3ync - go,  sin 443yn[}. 

The relationship between Go and Go is given from (1  8) and (20) as 

(A 3) -f- = -  voz Wo&2 

As these series may not be uniformly convergent near z = 0, = 0 where the 
Ekman-layer transport enters this boundary layer we may not differentiate these 
series but it is permissible to integrate them. 

Therefore multiplication of (A 3) by sin mnz and integration by parts leads to 

- [ f ~ ,  sin mlrz]Tl + mnfc, cos mnz dz = - Go sin mnz dz. s”1 at3 a3 so - 1  

Substituting for Go and Go, using the orthogonality relations, and equating co- 
efficients, we have 

- - - - 
Go2 = 0, EolG03 = - ~ 0 3 ,  GOiGo3 = ~ 0 3 ,  ~ 0 1 3 0 5  = ~ 0 5 .  

Hence 

and 
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Equation (21) gives the relationship 
- - 
UO& = W o m  

which may be integrated as before to give 

The integral of this is 

where use has been made of the matching condition (25). 

given by (26). Now (21) may be integrated to 
To find Wo5 we use the condition on the volume flux through the corner region 

which if multiplied by cos mnx and integrated with respect to z ,  gives 

uo cos mnzdz = J 1: Go, d c  cos mnx d z  I:,- 
Therefore, using (As )  and (As) ,  

where ym = (mnf)+. Now let ( + 00 and use (26), giving in the limit 

Substitution of (A7) into (A6), (A4) and (A5) leads to (27), (28), and (29) respec- 
tively. 
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